
EXAMPLE 5.6

Exterior Bearing Wall Design

Given	Stud size and spacing Wall height Species and grade Exterior surface Interior surface Wind load (100 mph, gust)	= = =	2x4 at 24 in on center 8 ft Spruce-Pine-Fir, Stud Grade 7/16-in-thick OSB 1/2-in-thick, gypsum wall board 16 psf (see Chapter 3, Example 3.2)
Find	1 0		nd wall system for bending (wind) and axial

Solution

1. Determine tabulated design values for the stud by using the NDS-S (Table A4)

F _b	=	675 psi	$F_{c\perp}$	=	425 psi
Ft	=	350 psi			725 psi
Fv	=	70 psi	Е	=	1.2x10 ⁶ psi

2. Determine lumber property adjustments (see Section 5.2.4)

 $\begin{array}{rcl} C_D &=& 1.6 \mbox{ (wind load combination)} \\ &=& 1.25 \mbox{ (gravity/snow load combination)} \\ C_r &=& 1.5 \mbox{ (sheathed wall assembly, Table 5.4)} \\ C_L &=& 1.0 \mbox{ (continuous lateral bracing)} \\ C_F &=& 1.05 \mbox{ for } F_c \\ &=& 1.1 \mbox{ for } F_t \\ &=& 1.1 \mbox{ for } F_b \end{array}$

3.

Calculate adjusted tensile capacity

Not applicable to this design. Tension capacity is OK by inspection.

4. Calculate adjusted bending capacity

$$F_b' = F_b C_D C_L C_F C_r = (675)(1.6)(1.0)(1.1)(1.5) = 1,782 \text{ psi}$$

5. Calculate adjusted compressive capacity (NDS•3.7)

$$F_c^* = F_c C_D C_F = (725 \text{ psi})(1.6)(1.05) = 1,218 \text{ psi}$$

$$E' = E = 1.2 \times 10^6 \text{ psi}$$

 $K_{cE} = 0.3$ visually graded lumber

$$c = 0.8 \text{ sawn lumber}$$

$$F_{cE} = \frac{K_{cE}E'}{\binom{l_e}{d}^2} = \frac{0.3(1.2 \times 10^6 \text{ psi})}{\begin{bmatrix} 8 \text{ ft}(12 \text{ in/ft})/3.5 \text{ in} \end{bmatrix}^2} = 479 \text{ psi}$$

$$C_p = \frac{1 + \binom{F_{cE}}{F_c} *}{2c} - \sqrt{\left[\frac{1 + \binom{F_{cE}}{F_c}}{2c}\right]^2 - \frac{F_{cE}}{c} *}{c}} \quad (\text{column stability})$$

factor)

6.

$$= \frac{1 + \left(\frac{479}{1,218}\right)}{2(0.8)} - \sqrt{\left[\frac{1 + \left(\frac{479}{1,218}\right)}{2(0.8)}\right]^2} - \frac{\frac{479}{1,218}}{0.8} = 0.35$$

F_c' = F_cC_DC_FC_P = (725 psi)(1.6)(1.05)(0.35) = 426 psi

Axial load only case

Calculations are same as above except use $C_D = 1.25$ $F_c^* = 952 \text{ psi}$ $C_p = 0.44$ $F_c' = F_cC_DC_FC_P = 725 \text{ psi} (1.25)(1.05)(0.44) = 419 \text{ psi}$

Г

Calculate combined bending and axial compression capacity for wind and gravity load (dead only) by using the combined stress interaction (CSI) equation (NDS•3.9.2):

$$f_{b} = \frac{M}{S} = \frac{\frac{1}{8} w\ell^{2}}{S}$$

$$= \frac{\frac{1}{8} (24 \text{ in})(16 \text{ psf}) \left[(8 \text{ ft})(12 \text{ in}/_{\text{ft}}) \right]^{2} (1 \text{ ft}/12 \text{ in})}{3.06 \text{ in}^{3}}$$

$$= 1,004 \text{ psi}$$

$$\left(\frac{f_{c}}{F_{c}}\right)^{2} + \frac{f_{b}}{F_{b}} \left[1 - \frac{f_{c}}{F_{cE1}} \right] \leq 1.0 \text{ (CSI equation for bending in strong axis of stud}$$
only)
$$\left(\frac{f_{c}}{426}\right)^{2} + \frac{1,004}{1,782 \left(1 - \frac{f_{c}}{479}\right)} = 1.0 \text{ (solve CSI equation for f_{c})}$$